22/11/2021

Efficient Cross-Modal Retrieval via Deep Binary Hashing and Quantization

Yang Shi, Young Joo Chung

Keywords: cross modal retrieval, hashing, quantization

Abstract: Cross-modal retrieval aims to search for data with similar semantic meanings across different content modalities. However, cross-modal retrieval requires huge amounts of storage and retrieval time since it needs to process data in multiple modalities. Existing works focused on learning single-source compact features such as binary hash codes that preserve similarities between different modalities. In this work, we propose a jointly learned deep hashing and quantization network (HQ) for cross-modal retrieval. We simultaneously learn binary hash codes and quantization codes to preserve semantic information in multiple modalities by an end-to-end deep learning architecture. At the retrieval step, binary hashing is used to retrieve a subset of items from the search space, then quantization is used to re-rank the retrieved items. We theoretically and empirically show that this two-stage retrieval approach provides faster retrieval results while preserving accuracy. Experimental results on the NUS-WIDE, MIR-Flickr, and Amazon datasets demonstrate that HQ achieves boosts of more than 7% in precision compared to supervised neural network-based compact coding models.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers