14/06/2020

AugFPN: Improving Multi-Scale Feature Learning for Object Detection

Chaoxu Guo, Bin Fan, Qian Zhang, Shiming Xiang, Chunhong Pan

Keywords: object detection, augfpn, consistent supervision, residual feature augmentation, soft roi selection

Abstract: Current state-of-the-art detectors typically exploit feature pyramid to detect objects at different scales. Among them, FPN is one of the representative works that build a feature pyramid by multi-scale features summation. However, the design defects behind prevent the multi-scale features from being fully exploited. In this paper, we begin by first analyzing the design defects of feature pyramid in FPN, and then introduce a new feature pyramid architecture named AugFPN to address these problems. Specifically, AugFPN consists of three components: Consistent Supervision, Residual Feature Augmentation, and Soft RoI Selection. AugFPN narrows the semantic gaps between features of different scales before feature fusion through Consistent Supervision. In feature fusion, ratio-invariant context information is extracted by Residual Feature Augmentation to reduce the information loss of feature map at the highest pyramid level. Finally, Soft RoI Selection is employed to learn a better RoI feature adaptively after feature fusion. By replacing FPN with AugFPN in Faster R-CNN, our models achieve 2.3 and 1.6 points higher Average Precision (AP) when using ResNet50 and MobileNet-v2 as backbone respectively. Furthermore, AugFPN improves RetinaNet by 1.6 points AP and FCOS by 0.9 points AP when using ResNet50 as backbone. Codes are available on https://github.com/Gus-Guo/AugFPN.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers