02/02/2021

Domain General Face Forgery Detection by Learning to Weight

Ke Sun, Hong Liu, Qixiang Ye, Yue Gao, Jianzhuang Liu, Ling Shao, Rongrong Ji

Keywords:

Abstract: In this paper, we propose a domain-general model, termed learning-to-weight (LTW), that guarantees face detection performance across multiple domains, particularly the target domains that are never seen before. However, various face forgery methods cause complex and biased data distributions, making it challenging to detect fake faces in unseen domains. We argue that different faces contribute differently to a detection model trained on multiple domains, making the model likely to fit domain-specific biases. As such, we propose the LTW approach based on the meta-weight learning algorithm, which configures different weights for face images from different domains. The LTW network can balance the model's generalizability across multiple domains. Then, the meta-optimization calibrates the source domain's gradient enabling more discriminative features to be learned. The detection ability of the network is further improved by introducing an intra-class compact loss. Extensive experiments on several commonly used deepfake datasets to demonstrate the effectiveness of our method in detecting synthetic faces. Code and supplemental material are available at https://github.com/skJack/LTW.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947822
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers