02/02/2021

Adversarial Pose Regression Network for Pose-Invariant Face Recognitions

Pengyu Li, Biao Wang, Lei Zhang

Keywords:

Abstract: Face recognition has achieved significant progress in recent years. However, the large pose variation between face images remains a challenge in face recognition. We observe that the pose variation in the hidden feature maps is one of the most critical factors to hinder the representations from being pose-invariant. Based on the observation, we propose an Adversarial Pose Regression Network (APRN) to extract pose-invariant identity representations by disentangling their pose variation in hidden feature maps. To model the pose discriminator in APRN as a regression task in its 3D space, we also propose an Adversarial Regression Loss Function and extend the adversarial learning from classification problems to regression problems in this paper. Our APRN is a plug-and-play structure that can be embedded in other state-of-the-art face recognition algorithms to improve their performance additionally. The experiments show that the proposed APRN consistently and significantly boosts the performance of baseline networks without extra computational costs in the inference phase. APRN achieves comparable or even superior to the state-of-the-art on CFP, Multi-PIE, IJB-A and MegaFace datasets. The code will be released, hoping to nourish our proposals to other computer vision fields

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947856
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers