30/11/2020

Domain-transferred Face Augmentation Network

Hao-Chiang Shao, Kang-Yu Liu, Chia-Wen Lin, Jiwen Lu

Keywords:

Abstract: The performance of a convolutional neural network (CNN) based face recognition model largely relies on the richness of labelled training data. However, it is expensive to collect a training set with large variations of a face identity under different poses and illumination changes, so the diversity of within-class face images becomes a critical issue in practice. In this paper, we propose a 3D model-assisted domain-transferred face augmentation network (DotFAN) that can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets of other domains. Extending from StarGAN's architecture, DotFAN integrates with two additional subnetworks, i.e., face expert model (FEM) and face shape regressor (FSR), for latent facial code control. While FSR aims to extract face attributes, FEM is designed to capture a face identity. With their aid, DotFAN can separately learn facial feature codes and effectively generate face images of various facial attributes while keeping the identity of augmented faces unaltered. Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity so that a better face recognition model can be learned from the augmented dataset.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_515.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers