14/06/2020

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron, Richard Tucker, Noah Snavely

Keywords: lighting estimation, relighting, object insertion, deep learning, augmented reality, view synthesis, 3d convolutional network

Abstract: We present a deep learning solution for estimating the incident illumination at any 3D location within a scene from an input narrow-baseline stereo image pair. Previous approaches for predicting global illumination from images either predict just a single illumination for the entire scene, or separately estimate the illumination at each 3D location without enforcing that the predictions are consistent with the same 3D scene. Instead, we propose a deep learning model that estimates a 3D volumetric RGBA model of a scene, including content outside the observed field of view, and then uses standard volume rendering to estimate the incident illumination at any 3D location within that volume. Our model is trained without any ground truth 3D data and only requires a held-out perspective view near the input stereo pair and a spherical panorama taken within each scene as supervision, as opposed to prior methods for spatially-varying lighting estimation, which require ground truth scene geometry for training. We demonstrate that our method can predict consistent spatially-varying lighting that is convincing enough to plausibly relight and insert highly specular virtual objects into real images.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers