14/06/2020

Through the Looking Glass: Neural 3D Reconstruction of Transparent Shapes

Zhengqin Li, Yu-Ying Yeh, Manmohan Chandraker

Keywords: physically-based learning, transparent shapes, complex light transport, 3d reconstruction, differentiable rendering, photorealistic datasets

Abstract: Recovering the 3D shape of transparent objects using a small number of unconstrained natural images is an ill-posed problem. Complex light paths induced by refraction and reflection have prevented both traditional and deep multiview stereo from solving this challenge. We propose a physically-based network to recover 3D shape of transparent objects using a few images acquired with a mobile phone camera, under a known but arbitrary environment map. Our novel contributions include a normal representation that enables the network to model complex light transport through local computation, a rendering layer that models refractions and reflections, a cost volume specifically designed for normal refinement of transparent shapes and a feature mapping based on predicted normals for 3D point cloud reconstruction. We render a synthetic dataset to encourage the model to learn refractive light transport across different views. Our experiments show successful recovery of high-quality 3D geometry for complex transparent shapes using as few as 5-12 natural images. Code and data will be publicly released.Recovering the 3D shape of transparent objects using a small number of unconstrained natural images is an ill-posed problem. Complex light paths induced by refraction and reflection have prevented both traditional and deep multiview stereo from solving this challenge. We propose a physically-based network to recover 3D shape of transparent objects using a few images acquired with a mobile phone camera, under a known but arbitrary environment map. Our novel contributions include a normal representation that enables the network to model complex light transport through local computation, a rendering layer that models refractions and reflections, a cost volume specifically designed for normal refinement of transparent shapes and a feature mapping based on predicted normals for 3D point cloud reconstruction. We render a synthetic dataset to encourage the model to learn refractive light transport across different views. Our experiments show successful recovery of high-quality 3D geometry for complex transparent shapes using as few as 5-12 natural images. Code and data will be publicly released.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers