14/06/2020

On Joint Estimation of Pose, Geometry and svBRDF From a Handheld Scanner

Carolin Schmitt, Simon Donné, Gernot Riegler, Vladlen Koltun, Andreas Geiger

Keywords: 3d reconstruction, mobile lightstage, mulitview photometric stereo, svbrdf estimation, shape from shading, material segmentation, handheld 3d sensor, non-lambertian surfaces

Abstract: We propose a novel formulation for joint recovery of camera pose, object geometry and spatially-varying BRDF. The input to our approach is a sequence of RGB-D images captured by a mobile, hand-held scanner that actively illuminates the scene with point light sources. Compared to previous works that jointly estimate geometry and materials from a hand-held scanner, we formulate this problem using a single objective function that can be minimized using off-the-shelf gradient-based solvers. By integrating material clustering as a differentiable operation into the optimization process, we avoid pre-processing heuristics and demonstrate that our model is able to determine the correct number of specular materials independently. We provide a study on the importance of each component in our formulation and on the requirements of the initial geometry. We show that optimizing over the poses is crucial for accurately recovering fine details and show that our approach naturally results in a semantically meaningful material segmentation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers