06/12/2021

To The Point: Correspondence-driven monocular 3D category reconstruction

Filippos Kokkinos, Iasonas Kokkinos

Keywords: optimization

Abstract: We present To The Point (TTP), a method for reconstructing 3D objects from a single image using 2D to 3D correspondences given only foreground masks, a category specific template and optionally sparse keypoints for supervision. We recover a 3D shape from a 2D image by first regressing the 2D positions corresponding to the 3D template vertices and then jointly estimating a rigid camera transform and non-rigid template deformation that optimally explain the 2D positions through the 3D shape projection. By relying on correspondences we use a simple per-sample optimization problem to replace CNN-based regression of camera pose and non-rigid deformation and thereby obtain substantially more accurate 3D reconstructions. We treat this optimization as a differentiable layer and train the whole system in an end-to-end manner using geometry-driven losses. We report systematic quantitative improvements on multiple categories and provide qualitative results comprising diverse shape, poses and texture prediction examples.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers