22/06/2020

Bipartite TSP in o(1.9999ⁿ) time, assuming quadratic time matrix multiplication

Jesper Nederlof

Keywords: Traveling Salesman Problem, Exponential Time algorithms

Abstract: The symmetric traveling salesman problem (TSP) is the problem of finding the shortest Hamiltonian cycle in an edge-weighted undirected graph. In 1962 Bellman, and independently Held and Karp, showed that TSP instances with n cities can be solved in O(n22n) time. Since then it has been a notorious problem to improve the runtime to O((2−є)n) for some constant є>0. In this work we establish the following progress: If (s s)-matrices can be multiplied in s2+o(1) time, than all instances of TSP in bipartite graphs can be solved in O(1.9999n) time by a randomized algorithm with constant error probability. We also indicate how our methods may be useful to solve TSP in non-bipartite graphs. On a high level, our approach is via a new problem called MinHamPair: Given two families of weighted perfect matchings, find a combination of minimum weight that forms a Hamiltonian cycle. As our main technical contribution, we give a fast algorithm for MinHamPair based on a new sparse cut-based factorization of the “matchings connectivity matrix”, introduced by Cygan et al. [JACM’18].

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers