16/11/2020

IGSQL: Database Schema Interaction Graph Based Neural Model for Context-Dependent Text-to-SQL Generation

Yitao Cai, Xiaojun Wan

Keywords: context-dependent task, context-dependent drawn, decoding phase, encoders

Abstract: Context-dependent text-to-SQL task has drawn much attention in recent years. Previous models on context-dependent text-to-SQL task only concentrate on utilizing historic user inputs. In this work, in addition to using encoders to capture historic information of user inputs, we propose a database schema interaction graph encoder to utilize historic information of database schema items. In decoding phase, we introduce a gate mechanism to weigh the importance of different vocabularies and then make the prediction of SQL tokens. We evaluate our model on the benchmark SParC and CoSQL datasets, which are two large complex context-dependent cross-domain text-to-SQL datasets. Our model outperforms previous state-of-the-art model by a large margin and achieves new state-of-the-art results on the two datasets. The comparison and ablation results demonstrate the efficacy of our model and the usefulness of the database schema interaction graph encoder.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers