04/07/2020

Transition-based Semantic Dependency Parsing with Pointer Networks

Daniel Fernández-González, Carlos Gómez-Rodríguez

Keywords: dependency parsing, harder problem, NLP problem, semantic parsing

Abstract: Transition-based parsers implemented with Pointer Networks have become the new state of the art in dependency parsing, excelling in producing labelled syntactic trees and outperforming graph-based models in this task. In order to further test the capabilities of these powerful neural networks on a harder NLP problem, we propose a transition system that, thanks to Pointer Networks, can straightforwardly produce labelled directed acyclic graphs and perform semantic dependency parsing. In addition, we enhance our approach with deep contextualized word embeddings extracted from BERT. The resulting system not only outperforms all existing transition-based models, but also matches the best fully-supervised accuracy to date on the SemEval 2015 Task 18 datasets among previous state-of-the-art graph-based parsers.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers