02/02/2021

The Power of Literal Equivalence in Model Counting

Yong Lai, Kuldeep S. Meel, Roland H. C. Yap

Keywords:

Abstract: The past two decades have seen the significant improvements of the scalability of practical model counters, which have been quite influential in many applications from artificial intelligence to formal verification. While most of exact counters fall into two categories, search-based and compilation-based, Huang and Darwiche's remarkable observation ties these two categories: the trace of a search-based exact model counter corresponds to a Decision-DNNF formula. Taking advantage of literal equivalences, this paper designs an efficient model counting technique such that its trace is a generalization of Decision-DNNF formula. We first propose a generalization of Decision-DNNF, called CCDD, to capture literal equivalences, then show that CCDD supports model counting in linear time, and finally design a model counter, called ExactMC, whose trace corresponds to CCDD. We perform an extensive experimental evaluation over a comprehensive set of benchmarks and conduct performance comparison of ExactMC vis-a-vis the state of the art counters, c2d, Dsharp, miniC2D, D4, ADDMC, and Ganak. Our empirical evaluation demonstrates ExactMC can solve 885 instances while the prior state of the art could solve only 843 instances, representing a significant improvement of 42 instances.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949191
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers