19/10/2020

Neural relation extraction on wikipedia tables for augmenting knowledge graphs

Erin Macdonald, Denilson Barbosa

Keywords: information extraction, benchmarking, web tables

Abstract: Knowledge Graph Augmentation is the task of adding missing facts to an incomplete knowledge graph to improve its effectiveness in applications such as web search and question answering. State-of-the-art methods rely on information extraction from running text, leaving rich sources of facts such as tables behind. We help close this gap with a neural method that uses contextual information surrounding a table in a Wikipedia article to extract relations between entities appearing in the same row of a table or between the entity of said article and entities appearing in the table. We trained and tested our method on a much larger dataset compared to previous work which we have made public and observed experimentally that our method is very promising for the task.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412164#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers