02/02/2021

Entity Guided Question Generation with Contextual Structure and Sequence Information Capturing

Qingbao Huang, Mingyi Fu, Linzhang Mo, Yi Cai, Jingyun Xu, Pijian Li, Qing Li, Ho-fung Leung

Keywords:

Abstract: Question generation is a challenging task and has attracted widespread attention in recent years. Although previous studies have made great progress, there are still two main shortcomings: First, previous work did not simultaneously capture the sequence information and structure information hidden in the context, which results in poor results of the generated questions. Second, the generated questions cannot be answered by the given context. To tackle these issues, we propose an entity guided question generation model with contextual structure information and sequence information capturing. We use a Graph Convolutional Network and a Bidirectional Long Short Term Memory Network to capture the structure information and sequence information of the context, simultaneously. In addition, to improve the answerability of the generated questions, we use an entity-guided approach to obtain question type from the answer, and jointly encode the answer and question type. Both automatic and manual metrics show that our model can generate comparable questions with state-of-the-art models. Our code is available at https://github.com/VISLANG-Lab/EGSS.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948792
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers