02/02/2021

Certifying Parity Reasoning Efficiently Using Pseudo-Boolean Proofs

Stephan Gocht, Jakob Nordström

Keywords:

Abstract: The dramatic improvements in combinatorial optimization algorithms over the last decades have had a major impact in artificial intelligence, operations research, and beyond, but the output of current state-of-the-art solvers is often hard to verify and is sometimes wrong. For Boolean satisfiability (SAT) solvers proof logging has been introduced as a way to certify correctness, but the methods used seem hard to generalize to stronger paradigms. What is more, even for enhanced SAT techniques such as parity (XOR) reasoning, cardinality detection, and symmetry handling, it has remained beyond reach to design practically efficient proofs in the standard DRAT format. In this work, we show how to instead use pseudo-Boolean inequalities with extension variables to concisely justify XOR reasoning. Our experimental evaluation of a SAT solver integration shows a dramatic decrease in proof logging and verification time compared to existing DRAT methods. Since our method is a strict generalization of DRAT, and readily lends itself to expressing also 0-1 programming and even constraint programming problems, we hope this work points the way towards a unified approach for efficient machine-verifiable proofs for a rich class of combinatorial optimization paradigms.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948837
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers