06/12/2021

Online Facility Location with Multiple Advice

Matteo Almanza, Flavio Chierichetti, Silvio Lattanzi, Alessandro Panconesi, Giuseppe Re

Keywords: self-supervised learning, clustering

Abstract: Clustering is a central topic in unsupervised learning and its online formulation has received a lot of attention in recent years. In this paper, we study the classic facility location problem in the presence of multiple machine-learned advice. We design an algorithm with provable performance guarantees such that, if the advice is good, it outperforms the best-known online algorithms for the problem, and if it is bad it still matches their performance.We complement our theoretical analysis with an in-depth study of the performance of our algorithm, showing its effectiveness on synthetic and real-world data sets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers