09/07/2020

Gradient descent algorithms for Bures-Wasserstein barycenters

Sinho Chewi, Philippe Rigollet, Tyler Maunu, Austin Stromme

Keywords: Non-convex optimization, High-dimensional statistics

Abstract: We study first order methods to compute the barycenter of a probability distribution $P$ over the space of probability measures with finite second moment. We develop a framework to derive global rates of convergence for both gradient descent and stochastic gradient descent despite the fact that the barycenter functional is not geodesically convex. Our analysis overcomes this technical hurdle by employing a Polyak-\L{}ojasiewicz (PL) inequality and relies on tools from optimal transport and metric geometry. In turn, we establish a PL inequality when $P$ is supported on the Bures-Wasserstein manifold of Gaussian probability measures. It leads to the first global rates of convergence for first order methods in this context.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers