06/12/2020

Convex optimization based on global lower second-order models

Nikita Doikov, Yurii Nesterov

Keywords:

Abstract: In this work, we present new second-order algorithms for composite convex optimization, called Contracting-domain Newton methods. These algorithms are affine-invariant and based on global second-order lower approximation for the smooth component of the objective. Our approach has an interpretation both as a second-order generalization of the conditional gradient method, or as a variant of trust-region scheme. Under the assumption, that the problem domain is bounded, we prove $O(1/k^2)$ global rate of convergence in functional residual, where $k$ is the iteration counter, minimizing convex functions with Lipschitz continuous Hessian. This significantly improves the previously known bound $O(1/k)$ for this type of algorithms. Additionally, we propose a stochastic extension of our method, and present computational results for solving empirical risk minimization problem.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers