06/12/2021

Efficient Generalization with Distributionally Robust Learning

Soumyadip Ghosh, Mark Squillante, Ebisa Wollega

Keywords: optimization, machine learning

Abstract: Distributionally robust learning (DRL) is increasingly seen as a viable method to train machine learning models for improved model generalization. These min-max formulations, however, are more difficult to solve. We provide a new stochastic gradient descent algorithm to efficiently solve this DRL formulation. Our approach applies gradient descent to the outer minimization formulation and estimates the gradient of the inner maximization based on a sample average approximation. The latter uses a subset of the data sampled without replacement in each iteration, progressively increasing the subset size to ensure convergence. We rigorously establish convergence to a near-optimal solution under standard regularity assumptions and, for strongly convex losses, match the best known $O(\epsilon{ −1})$ rate of convergence up to a known threshold. Empirical results demonstrate the significant benefits of our approach over previous work in improving learning for model generalization.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers