26/08/2020

Automatic Differentiation of Some First-Order Methods in Parametric Optimization

Sheheryar Mehmood, Peter Ochs

Keywords:

Abstract: We aim at computing the derivative of the solution to a parametric optimization problem with respect to the involved parameters. For a class broader than that of strongly convex functions, this can be achieved by automatic differentiation of iterative minimization algorithms. If the iterative algorithm converges pointwise, then we prove that the derivative sequence also converges pointwise to the derivative of the minimizer with respect to the parameters. Moreover, we provide convergence rates for both sequences. In particular, we prove that the accelerated convergence rate of the Heavy-ball method compared to Gradient Descent also accelerates the derivative computation. An experiment with L2-Regularized Logistic Regression validates the theoretical results.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers