04/07/2020

Dynamic Memory Induction Networks for Few-Shot Text Classification

Ruiying Geng, Binhua Li, Yongbin Li, Jian Sun, Xiaodan Zhu

Keywords: Few-Shot Classification, few-short classification, Dynamic Networks, Dynamic DMIN

Abstract: This paper proposes Dynamic Memory Induction Networks (DMIN) for few-short text classification. The model develops a dynamic routing mechanism over static memory, enabling it to better adapt to unseen classes, a critical capability for few-short classification. The model also expands the induction process with supervised learning weights and query information to enhance the generalization ability of meta-learning. The proposed model brings forward the state-of-the-art performance significantly by 2~4% improvement on the miniRCV1 and ODIC datasets. Detailed analysis is further performed to show how the proposed network achieves the new performance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers