02/02/2021

Learning a Few-shot Embedding Model with Contrastive Learning

Chen Liu, Yanwei Fu, Chengming Xu, Siqian Yang, Jilin Li, Chengjie Wang, Li Zhang

Keywords:

Abstract: Few-shot learning (FSL) aims to recognize target classes by adapting the prior knowledge learned from source classes. Such knowledge usually resides in a deep embedding model for a general matching purpose of the support and query image pairs. The objective of this paper is to repurpose the contrastive learning for such matching to learn a few-shot embedding model. We make the following contributions: (i) We investigate the contrastive learning with Noise Contrastive Estimation (NCE) in a supervised manner for training a few-shot embedding model; (ii) We propose a novel contrastive training scheme dubbed infoPatch, exploiting the patch-wise relationship to substantially improve the popular infoNCE; (iii) We show that the embedding learned by the proposed infoPatch is more effective; (iv) Our model is thoroughly evaluated on few-shot recognition task; and demonstrates state-of-the-art results on miniImageNet and appealing performance on tieredImageNet, Fewshot-CIFAR100 (FC-100).

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948106
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers