19/10/2020

Enhance prototypical network with text descriptions for few-shot relation classification

Kaijia Yang, Nantao Zheng, Xinyu Dai, Liang He, Shujian Huang, Jiajun Chen

Keywords: text description, relation extraction, few shot

Abstract: Recently few-shot relation classification has drawn much attention. It devotes to addressing the long-tail relation problem by recognizing the relations from few instances. The existing metric learning methods aim to learn the prototype of classes and make prediction according to distances between query and prototypes. However, it is likely to make unreliable predictions due to the text diversity. It is intuitive that the text descriptions of relation and entity can provide auxiliary support evidence for relation classification. In this paper, we propose TD-Proto, which enhances prototypical network with relation and entity descriptions. We design a collaborative attention module to extract beneficial and instructional information of sentence and entity respectively. A gate mechanism is proposed to fuse both information dynamically so as to obtain a knowledge-aware instance. Experimental results demonstrate that our method achieves excellent performance.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412153#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers