19/08/2021

Compositional Neural Logic Programming

Son N. Tran

Keywords: Machine Learning, Neuro-Symbolic Methods, Leveraging Knowledge and Learning

Abstract: This paper introduces Compositional Neural Logic Programming (CNLP), a framework that integrates neural networks and logic programming for symbolic and sub-symbolic reasoning. We adopt the idea of compositional neural networks to represent first-order logic predicates and rules. A voting backward-forward chaining algorithm is proposed for inference with both symbolic and sub-symbolic variables in an argument-retrieval style. The framework is highly flexible in that it can be constructed incrementally with new knowledge, and it also supports batch reasoning in certain cases. In the experiments, we demonstrate the advantages of CNLP in discriminative tasks and generative tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers