12/09/2020

On Tractable XAI Queries based on Compiled Representations

Gilles Audemard, Frédéric Koriche, Pierre Marquis

Keywords: Explainable AI-General, Knowledge representation languages-General

Abstract: One of the key purposes of eXplainable AI (XAI) is to develop techniques for understanding predictions made by Machine Learning (ML) models and for assessing how much reliable they are. Several encoding schemas have recently been pointed out, showing how ML classifiers of various types can be mapped to Boolean circuits exhibiting the same input-output behaviours. Thanks to such mappings, XAI queries about classifiers can be delegated to the corresponding circuits. In this paper, we define new explanation and/or verification queries about classifiers. We show how they can be addressed by combining queries and transformations about the associated Boolean circuits. Taking advantage of previous results from the knowledge compilation map, this allows us to identify a number of XAI queries that are tractable provided that the circuit has been first turned into a compiled representation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers