22/11/2021

Cross-Modal Generative Augmentation for Visual Question Answering

Zixu Wang, Yishu Miao, Lucia Specia

Keywords: visual question answering, data augmentation, generative model, multimodal machine learning

Abstract: Data augmentation has been shown to effectively improve the performance of multimodal machine learning models. This paper introduces a generative model for data augmentation by leveraging the correlations among multiple modalities. Different from conventional data augmentation approaches that apply low-level operations with deterministic heuristics, our method learns a generator that generates samples of the target modality conditioned on observed modalities in the variational auto-encoder framework. Additionally, the proposed model is able to quantify the confidence of augmented data by its generative probability, and can be jointly optimised with a downstream task. Experiments on Visual Question Answering as downstream task demonstrate the effectiveness of the proposed generative model, which is able to improve strong UpDn-based models to achieve state-of-the-art performance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers