26/04/2020

The Shape of Data: Intrinsic Distance for Data Distributions

Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Alex Bronstein, Ivan Oseledets, Emmanuel Mueller

Keywords: Deep Learning, Generative Models, Nonlinear Dimensionality Reduction, Manifold Learning, Similarity and Distance Learning, Spectral Methods

Abstract: The ability to represent and compare machine learning models is crucial in order to quantify subtle model changes, evaluate generative models, and gather insights on neural network architectures. Existing techniques for comparing data distributions focus on global data properties such as mean and covariance; in that sense, they are extrinsic and uni-scale. We develop a first-of-its-kind intrinsic and multi-scale method for characterizing and comparing data manifolds, using a lower-bound of the spectral variant of the Gromov-Wasserstein inter-manifold distance, which compares all data moments. In a thorough experimental study, we demonstrate that our method effectively discerns the structure of data manifolds even on unaligned data of different dimensionalities; moreover, we showcase its efficacy in evaluating the quality of generative models.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers