02/02/2021

Measuring Dependence with Matrix-based Entropy Functional

Shujian Yu, Francesco Alesiani, Xi Yu, Robert Jenssen, Jose Principe

Keywords:

Abstract: Measuring the dependence of data plays a central role in statistics and machine learning. In this work, we summarize and generalize the main idea of existing information-theoretic dependence measures into a higher-level perspective by the Shearer's inequality. Based on our generalization, we then propose two measures, namely the matrix-based normalized total correlation and the matrix-based normalized dual total correlation, to quantify the dependence of multiple variables in arbitrary dimensional space, without explicit estimation of the underlying data distributions. We show that our measures are differentiable and statistically more powerful than prevalent ones. We also show the impact of our measures in four different machine learning problems, namely the gene regulatory network inference, the robust machine learning under covariate shift and non-Gaussian noises, the subspace outlier detection, and the understanding of the learning dynamics of convolutional neural networks, to demonstrate their utilities, advantages, as well as implications to those problems.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948902
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers