26/04/2020

Symplectic Recurrent Neural Networks

Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, Léon Bottou

Keywords: Hamiltonian systems, learning physical laws, symplectic integrators, recurrent neural networks, inverse problems

Abstract: We propose Symplectic Recurrent Neural Networks (SRNNs) as learning algorithms that capture the dynamics of physical systems from observed trajectories. SRNNs model the Hamiltonian function of the system by a neural networks, and leverage symplectic integration, multiple-step training and initial state optimization to address the challenging numerical issues associated with Hamiltonian systems. We show SRNNs succeed reliably on complex and noisy Hamiltonian systems. Finally, we show how to augment the SRNN integration scheme in order to handle stiff dynamical systems such as bouncing billiards.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers