22/11/2021

ZeBRA: Precisely Destroying Neural Networks with Zero-Data Based Repeated Bit Flip Attack

Dahoon Park, Kon-Woo Kwon, Sunghoon Im, Jaeha Kung

Keywords: deep learning, deep learning security, adversarial attack, adversarial weight attack, data-free deep learning, row hammering, quantization

Abstract: In this paper, we present Zero-data Based Repeated bit flip Attack (ZeBRA) that precisely destroys deep neural networks (DNNs) by synthesizing its own attack datasets. Many prior works on adversarial weight attack require not only the weight parameters, but also the training or test dataset in searching vulnerable bits to be attacked. We propose to synthesize the attack dataset, named distilled target data, by utilizing the statistics of batch normalization layers in the victim DNN model. Equipped with the distilled target data, our ZeBRA algorithm can search vulnerable bits in the model without accessing training or test dataset. Thus, our approach makes the adversarial weight attack more fatal to the security of DNNs. Our experimental results show that 2.0x (CIFAR-10) and 1.6x (ImageNet) less number of bit flips are required on average to destroy DNNs compared to the previous attack method. Our code is available at https://github.com/pdh930105/ZeBRA.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers