14/06/2020

Enhancing Intrinsic Adversarial Robustness via Feature Pyramid Decoder

Guanlin Li, Shuya Ding, Jun Luo, Chang Liu

Keywords: adversarial defense, feature denoise, multi-task learning, self-supervised learning, image restoration, lipschitz constant constraint, feature pyramid decoder

Abstract: Whereas adversarial training is employed as the main defence strategy against specific adversarial samples, it has limited generalization capability and incurs excessive time complexity. In this paper, we propose an attack-agnostic defence framework to enhance the intrinsic robustness of neural networks, without jeopardizing the ability of generalizing clean samples. Our Feature Pyramid Decoder (FPD) framework applies to all block-based convolutional neural networks (CNNs). It implants denoising and image restoration modules into a targeted CNN, and it also constraints the Lipschitz constant of the classification layer. Moreover, we propose a two-phase strategy to train the FPD-enhanced CNN, utilizing -neighbourhood noisy images with multi-task and self-supervised learning. Evaluated against a variety of white-box and black-box attacks, we demonstrate that FPD-enhanced CNNs gain sufficient robustness against general adversarial samples on MNIST, SVHN and CALTECH. In addition, if we further conduct adversarial training, the FPD-enhanced CNNs perform better than their non-enhanced versions.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers