14/06/2020

Defending and Harnessing the Bit-Flip Based Adversarial Weight Attack

Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali Chakrabarti, Deliang Fan

Keywords: neural network security, defense, adversarial weight attack

Abstract: Recently, a new paradigm of the adversarial attack on the quantized neural network weights has attracted great attention, namely, the Bit-Flip based adversarial weight attack, aka. Bit-Flip Attack (BFA). BFA has shown extraordinary attacking ability, where the adversary can malfunction a quantized Deep Neural Network (DNN) as a random guess, through malicious bit-flips on a small set of vulnerable weight bits (e.g., 13 out of 93 millions bits of 8-bit quantized ResNet-18). However, there are no effective defensive methods to enhance the fault-tolerance capability of DNN against such BFA. In this work, we conduct comprehensive investigations on BFA and propose to leverage binarization-aware training and its relaxation -- piece-wise clustering as simple and effective countermeasures to BFA. The experiments show that, for BFA to achieve the identical prediction accuracy degradation (e.g., below 11\% on CIFAR-10), it requires 19.3x and 480.1x more effective malicious bit-flips on ResNet-20 and VGG-11 respectively, compared to defend-free counterparts.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers