14/06/2020

Defending Against Model Stealing Attacks With Adaptive Misinformation

Sanjay Kariyappa, Moinuddin K. Qureshi

Keywords: model stealing, security, machine learning, deep learning

Abstract: Deep Neural Networks (DNNs) are susceptible to model stealing attacks, which allows a data-limited adversary with no knowledge of the training dataset to clone the functionality of a target model, just by using black-box query access. Such attacks are typically carried out by querying the target model using inputs that are synthetically generated or sampled from a surrogate dataset to construct a labeled dataset. The adversary can use this labeled dataset to train a clone model, which achieves a classification accuracy comparable to that of the target model. We propose "Adaptive Misinformation" to defend against such model stealing attacks. We identify that all existing model stealing attacks invariably query the target model with Out-Of-Distribution (OOD) inputs. By selectively sending incorrect predictions for OOD queries, our defense substantially degrades the accuracy of the attacker's clone model (by up to 40%), while minimally impacting the accuracy (<0.5%) for benign users. Compared to existing defenses, our defense has a significantly better security vs accuracy trade-off and incurs minimal computational overhead.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers