14/06/2020

Training Noise-Robust Deep Neural Networks via Meta-Learning

Zhen Wang, Guosheng Hu, Qinghua Hu

Keywords: label noise, noise-robust learning, loss correction approach, noise transition matrix, meta-learning

Abstract: Label noise may significantly degrade the performance of Deep Neural Networks (DNNs). To train noise-robust DNNs, Loss correction (LC) approaches have been introduced. LC approaches assume the noisy labels are corrupted from clean (ground-truth) labels by an unknown noise transition matrix T. The backbone DNNs and T can be trained separately, where T is approximated with prior knowledge. For example, T is constructed by stacking the maximum or mean predic- tions of the samples from each class. In this work, we pro- pose a new loss correction approach, named as Meta Loss Correction (MLC), to directly learn T from data via the meta-learning framework. The MLC is model-agnostic and learns T from data rather than heuristically approximates it using prior knowledge. Extensive evaluations are conducted on computer vision (MNIST, CIFAR-10, CIFAR-100, Cloth- ing1M) and natural language processing (Twitter) datasets. The experimental results show that MLC achieves very com- petitive performance against state-of-the-art approaches.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers