18/07/2021

Acceleration via Fractal Learning Rate Schedules

Naman Agarwal, Surbhi Goel, Cyril Zhang

Keywords: Optimization

Abstract: In practical applications of iterative first-order optimization, the learning rate schedule remains notoriously difficult to understand and expensive to tune. We demonstrate the presence of these subtleties even in the innocuous case when the objective is a convex quadratic. We reinterpret an iterative algorithm from the numerical analysis literature as what we call the Chebyshev learning rate schedule for accelerating vanilla gradient descent, and show that the problem of mitigating instability leads to a fractal ordering of step sizes. We provide some experiments to challenge conventional beliefs about stable learning rates in deep learning: the fractal schedule enables training to converge with locally unstable updates which make negative progress on the objective.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers