06/12/2020

Automatically Learning Compact Quality-aware Surrogates for Optimization Problems

Kai Wang, Bryan Wilder, Andrew Perrault, Milind Tambe

Keywords:

Abstract: Solving optimization problems with unknown parameters often requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values. Recent work has shown that including the optimization problem as a layer in the model training pipeline results in predictions of the unobserved parameters that lead to higher decision quality. Unfortunately, this process comes at a large computational cost because the optimization problem must be solved and differentiated through in each training iteration; furthermore, it may also sometimes fail to improve solution quality due to non-smoothness issues that arise when training through a complex optimization layer. To address these shortcomings, we learn a low-dimensional surrogate model of a large optimization problem by representing the feasible space in terms of meta-variables, each of which is a linear combination of the original variables. By training a low-dimensional surrogate model end-to-end, and jointly with the predictive model, we achieve: i) a large reduction in training and inference time; and ii) improved performance by focusing attention on the more important variables in the optimization and learning in a smoother space. Empirically, we demonstrate these improvements on a non-convex adversary modeling task, a submodular recommendation task and a convex portfolio optimization task.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers