19/08/2021

Contrastive Losses and Solution Caching for Predict-and-Optimize

Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns

Keywords: Machine Learning, Neuro-Symbolic Methods, Structured Prediction, Constraint Optimization

Abstract: Many decision-making processes involve solving a combinatorial optimization problem with uncertain input that can be estimated from historic data. Recently, problems in this class have been successfully addressed via end-to-end learning approaches, which rely on solving one optimization problem for each training instance at every epoch. In this context, we provide two distinct contributions. First, we use a Noise Contrastive approach to motivate a family of surrogate loss functions, based on viewing non-optimal solutions as negative examples. Second, we address a major bottleneck of all predict-and-optimize approaches, i.e. the need to frequently recompute optimal solutions at training time. This is done via a solver-agnostic solution caching scheme, and by replacing optimization calls with a lookup in the solution cache. The method is formally based on an inner approximation of the feasible space and, combined with a cache lookup strategy, provides a controllable trade-off between training time and accuracy of the loss approximation. We empirically show that even a very slow growth rate is enough to match the quality of state-of-the-art methods, at a fraction of the computational cost.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 3:12