07/06/2021

Check Mate: Prioritizing User Generated Multi-Media Content for Fact-Checking

Tarunima Prabhakar, Anushree Gupta, Kruttika Nadig, Denny George

Keywords: Qualitative and quantitative studies of social media, Credibility of online content, Trust, reputation, recommendation systems, New social media applications, interfaces, interaction techniques

Abstract: Volume of content and misinformation on social media is rapidly increasing. There is a need for systems that can support fact checkers by prioritizing content that needs to be fact checked. Prior research on prioritizing content for fact-checking has focused on news media articles, predominantly in English language. Increasingly, misinformation is found in user-generated content. In this paper we present a novel dataset that can be used to prioritize check-worthy posts from multi-media content in Hindi. It is unique in its 1) focus on user generated content, 2) language and 3) accommodation of multi-modality in social media posts. In addition, we also provide metadata for each post such as number of shares and likes of the post on ShareChat, a popular Indian social media platform, that allows for correlative analysis around virality and misinformation. The data is accessible on Zenodo (https://zenodo.org/record/4032629) under Creative Commons Attribution License (CC BY 4.0).

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICWSM 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers