07/06/2021

Misinformation Adoption or Rejection in the Era of COVID-19

Maxwell Weinzierl, Suellen Hopfer, Sanda M. Harabagiu

Keywords: Qualitative and quantitative studies of social media, Credibility of online content, Subjectivity in textual data, sentiment analysis, polarity/opinion identification and extraction, linguistic analyses of social media behavior, Organizational and group be

Abstract: The COVID-19 pandemic has led to a misinformation avalanche on social media, which produced confusion and insecurity in netizens. Learning how to automatically recognize adoption or rejection of misinformation about COVID-19 enables the understanding of the effects of exposure to misinformation and the threats it presents. By casting the problem of recognizing misinformation adoption or rejection as stance classification, we have designed a neural language processing system operating on micro-blogs which takes advantage of Graph Attention Networks relying on lexical, emotion, and semantic knowledge to discern the stance of each micro-blog with respect to COVID-19 misinformation. This enabled us not only to obtain promising results, but also allowed us to use a taxonomy of COVID-19 misinformation themes and concerns to characterize the misinformation adoption or rejection that can be best recognized automatically.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICWSM 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers