04/07/2020

#NotAWhore! A Computational Linguistic Perspective of Rape Culture and Victimization on Social Media

Ashima Suvarna, Grusha Bhalla

Keywords: sexual survivors, victim blaming, computationally methods, transfer-learning method

Abstract: The recent surge in online forums and movements supporting sexual assault survivors has led to the emergence of a `virtual bubble' where survivors can recount their stories. However, this also makes the survivors vulnerable to bullying, trolling and victim blaming. Specifically, victim blaming has been shown to have acute psychological effects on the survivors and further discourage formal reporting of such crimes. Therefore, it is important to devise computationally relevant methods to identify and prevent victim blaming to protect the victims. In our work, we discuss the drastic effects of victim blaming through a short case study and then propose a single step transfer-learning based classification method to identify victim blaming language on Twitter. Finally, we compare the performance of our proposed model against various deep learning and machine learning models on a manually annotated domain-specific dataset.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers