16/11/2020

Reactive Supervision: A New Method for Collecting Sarcasm Data

Boaz Shmueli, Lun-Wei Ku, Soumya Ray

Keywords: sarcasm detection, affective computing, affective domains, reactive supervision

Abstract: Sarcasm detection is an important task in affective computing, requiring large amounts of labeled data. We introduce reactive supervision, a novel data collection method that utilizes the dynamics of online conversations to overcome the limitations of existing data collection techniques. We use the new method to create and release a first-of-its-kind large dataset of tweets with sarcasm perspective labels and new contextual features. The dataset is expected to advance sarcasm detection research. Our method can be adapted to other affective computing domains, thus opening up new research opportunities.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers