02/02/2021

A Bottom-Up DAG Structure Extraction Model for Math Word Problems

Yixuan Cao, Feng Hong, Hongwei Li, Ping Luo

Keywords:

Abstract: Research on automatically solving mathematical word problems (MWP) has a long history. Most recent works adopt Seq2Seq approach to predict the result equations as a sequence of quantities and operators. Although result equations can be written as a sequence, it is essentially a structure. More precisely, it is a Direct Acyclic Graph (DAG) whose leaf nodes are the quantities, and internal and root nodes are arithmetic or comparison operators. In this paper, we propose a novel Seq2DAG approach to extract the equation set directly as a DAG structure. It is extracted in a bottom-up fashion by aggregating quantities and sub-expressions layer by layer iteratively. The advantages of our approach approach are three-fold: it is intrinsically suitable to solve multivariate problems, it always outputs valid structure, and its computation satisfies commutative law for +, x and =. Experimental results on Math23K and DRAW1K demonstrate that our model outperforms state-of-the-art deep learning methods. We also conduct detailed analysis on the results to show the strengths and limitations of our approach.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948564
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers