26/08/2020

Optimizing Millions of Hyperparameters by Implicit Differentiation

Jonathan Lorraine, Paul Vicol, David Duvenaud

Keywords:

Abstract: We propose an algorithm for inexpensive gradient-based hyperparameter optimization that combines the implicit function theorem (IFT) with efficient inverse Hessian approximations. We present results about the relationship between the IFT and differentiating through optimization, motivating our algorithm. We use the proposed approach to train modern network architectures with millions of weights and millions of hyper-parameters. For example, we learn a data-augmentation network—where every weight is a hyperparameter tuned for validation performance—outputting augmented training examples. Jointly tuning weights and hyper-parameters is only a few times more costly in memory and compute than standard training.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers