19/08/2021

Sample Efficient Decentralized Stochastic Frank-Wolfe Methods for Continuous DR-Submodular Maximization

Hongchang Gao, Hanzi Xu, Slobodan Vucetic

Keywords: Machine Learning Applications, Big data; Scalability

Abstract: Continuous DR-submodular maximization is an important machine learning problem, which covers numerous popular applications. With the emergence of large-scale distributed data, developing efficient algorithms for the continuous DR-submodular maximization, such as the decentralized Frank-Wolfe method, became an important challenge. However, existing decentralized Frank-Wolfe methods for this kind of problem have the sample complexity of $\mathcal{O}(1/\epsilon^3)$, incurring a large computational overhead. In this paper, we propose two novel sample efficient decentralized Frank-Wolfe methods to address this challenge. Our theoretical results demonstrate that the sample complexity of the two proposed methods is $\mathcal{O}(1/\epsilon^2)$, which is better than $\mathcal{O}(1/\epsilon^3)$ of the existing methods. As far as we know, this is the first published result achieving such a favorable sample complexity. Extensive experimental results confirm the effectiveness of the proposed methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers