19/08/2021

On the Convergence of Stochastic Compositional Gradient Descent Ascent Method

Hongchang Gao, Xiaoqian Wang, Lei Luo, Xinghua Shi

Keywords: Machine Learning, Adversarial Machine Learning, Cost-Sensitive Learning

Abstract: The compositional minimax problem covers plenty of machine learning models such as the distributionally robust compositional optimization problem. However, it is yet another understudied problem to optimize the compositional minimax problem. In this paper, we develop a novel efficient stochastic compositional gradient descent ascent method for optimizing the compositional minimax problem. Moreover, we establish the theoretical convergence rate of our proposed method. To the best of our knowledge, this is the first work achieving such a convergence rate for the compositional minimax problem. Finally, we conduct extensive experiments to demonstrate the effectiveness of our proposed method.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers