02/02/2021

Predicting Livelihood Indicators from Community-Generated Street-Level Imagery

Jihyeon Lee, Dylan Grosz, Burak Uzkent, Sicheng Zeng, Marshall Burke, David Lobell, Stefano Ermon

Keywords:

Abstract: Major decisions from governments and other large organizations rely on measurements of the populace's well-being, but making such measurements at a broad scale is expensive and thus infrequent in much of the developing world. We propose an inexpensive, scalable, and interpretable approach to predict key livelihood indicators from public crowd-sourced street-level imagery. Such imagery can be cheaply collected and more frequently updated compared to traditional surveying methods, while containing plausibly relevant information for a range of livelihood indicators. We propose two approaches to learn from the street-level imagery: (1) a method that creates multi-household cluster representations by detecting informative objects and (2) a graph-based approach that captures the relationships between images. By visualizing what features are important to a model and how they are used, we can help end-user organizations understand the models and offer an alternate approach for index estimation that uses cheaply obtained roadway features. By comparing our results against ground data collected in nationally-representative household surveys, we demonstrate the performance of our approach in accurately predicting indicators of poverty, population, and health and its scalability by testing in two different countries, India and Kenya. Our code is available at https://github.com/sustainlab-group/mapillarygcn.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949279
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers