23/08/2020

Learning to simulate human mobility

Jie Feng, Zeyu Yang, Fengli Xu, Haisu Yu, Mudan Wang, Yong Li

Keywords: mobility trajectory, gan, mobility simulation

Abstract: Realistic simulation of a massive amount of human mobility data is of great use in epidemic spreading modeling and related health policy-making. Existing solutions for mobility simulation can be classified into two categories: model-based methods and model-free methods, which are both limited in generating high-quality mobility data due to the complicated transitions and complex regularities in human mobility. To solve this problem, we propose a model-free generative adversarial framework, which effectively integrates the domain knowledge of human mobility regularity utilized in the model-based methods. In the proposed framework, we design a novel self-attention based sequential modeling network as the generator to capture the complicated temporal transitions in human mobility. To augment the learning power of the generator with the advantages of model-based methods, we design an attention-based region network to introduce the prior knowledge of urban structure to generate a meaningful trajectory. As for the discriminator, we design a mobility regularity-aware loss to distinguish the generated trajectory. Finally, we utilize the mobility regularities of spatial continuity and temporal periodicity to pre-train the generator and discriminator to further accelerate the learning procedure. Extensive experiments on two real-life mobility datasets demonstrate that our framework outperforms seven state-of-the-art baselines significantly in terms of improving the quality of simulated mobility data by 35

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3412862#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers