14/09/2020

Learning a Contextual and Topological Representation of Areas-of-Interest for On-Demand Delivery Application

Mingxuan Yue, Tianshu Sun, Fan Wu, Lixia Wu, Yinghui Xu, Cyrus Shahabi

Keywords: representation learning, trajectories, multi-view autoencoder

Abstract: A good representation of urban areas is of great importance in on-demand delivery services such as for ETA prediction. However, the existing representations learn either from sparse check-in histories or topological geometries, thus are either lacking coverage and violating the geographical law or ignoring contextual information from data. In this paper, we propose a novel representation learning framework for obtaining a unified representation of Area of Interest from both contextual data (trajectories) and topological data (graphs). The framework first encodes trajectories and graphs into homogeneous views, and then train a multi-view autoencoder to learn the representation of areas using a ranking-based loss. Experiments with real-world package delivery data on ETA prediction confirm the effectiveness of the model.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers