02/02/2021

MolGrow: A Graph Normalizing Flow for Hierarchical Molecular Generation

Maksim Kuznetsov, Daniil Polykovskiy

Keywords:

Abstract: We propose a hierarchical normalizing flow model for generating molecular graphs. The model produces new molecular structures from a single-node graph by recursively splitting every node into two. All operations are invertible and can be used as plug-and-play modules. The hierarchical nature of the latent codes allows for precise changes in the resulting graph: perturbations in the first layer cause global structural changes, while perturbations in the consequent layers change the resulting molecule only marginally. Proposed model outperforms existing generative graph models on the distribution learning task. We also show successful experiments on global and constrained optimization of chemical properties using latent codes of the model.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948372
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers